一、个人简介
2024年3月毕业于香港理工大学土木工程系,博士学位。主要研究方向为基于深度学习的非线性建模与时序信号重构等。
姓 名:叶昕
毕业院校:香港理工大学
学习经历:浙江大学(本科),香港理工大学(博士)
职称:讲师
研究方向:结构振动控制、机器学习、深度学习
二、代表论著
1、Ye X, Ni Y Q, Sajjadi M, et al. Physics-guided, data-refined modeling of granular material-filled particle dampers by deep transfer learning[J]. Mechanical Systems and Signal Processing, 2022, 180: 109437.
2、Ye X, Ni Y Q, Ao W K, et al. Modeling of the hysteretic behavior of nonlinear particle damping by Fourier neural network with transfer learning[J]. Mechanical Systems and Signal Processing, 2024, 208: 111006.
3、Li G Z, Ye X, Deng E, et al. Aerodynamic mechanism of a combined buffer hood for mitigating micro-pressure waves at the 400 km/h high-speed railway tunnel portal[J]. Physics of Fluids, 2023, 35(12).
4、Tan Y K, Wang Y L, Deng E, et al. Automatic damage detection and data completion for operational bridge safety using convolutional echo state networks[J]. Automation in Construction, 2024, 166: 105606.
三、联系方式
电子邮箱:nixey96@163.com